
blockchain Documentation
Release unknown

Sebastian Jäger

Feb 09, 2020

Contents

1 Getting Started 3
1.1 Install the CLI Locally . 3

2 How Does This Blockchain Implementation Work? 5
2.1 Miner Implementation . 5
2.2 Web-based User Interface . 6
2.3 Proof of Work . 6

3 Improvements 7

4 Contents 9
4.1 License . 9
4.2 Contributors . 12
4.3 Changelog . 12
4.4 src . 12

5 Indices and tables 19

Python Module Index 21

Index 23

i

ii

blockchain Documentation, Release unknown

This is the documentation of Blockchain a simple implementation in Python to get familiar with Python and the basic
concepts of Blockchains.

Short Disclaimer: It is just a private Python 3.7.2 project. Its purposes is to get a little bit familiar with the
Python projects and the concepts of Blockchains. Therefore it is not intended for production usage, and any warranties
are excluded.

Contents 1

blockchain Documentation, Release unknown

2 Contents

CHAPTER 1

Getting Started

The easiest way to get up a single miner or a whole blockchain network is to use Docker. This repository offers the
needed Dockerfile and docker-compose.yaml in the directory docker. Do the following steps:

1. Change to docker directory

2. Run docker build --no-cache -t blockchain .

3. Run docker-compose up

This starts a Blockchain network with 3 miners and forwards their ports (12345, 12346, 12347) to your host system.
It uses the directory ~/.blockchain/ on your host system to save the created files for each miner.

1.1 Install the CLI Locally

1. Clone this repository: git clone git@github.com:se-jaeger/blockchain.git

2. Open the clone directory: cd blockchain

3. Create a virtual env: python -m venv venv

4. Activate the virtual env: source venv/bin/activate

5. Install all dependencies: pip install -r requirements.txt

6. Install the blockchain CLI, run the following in the root directory of this project: pip install -e .

7. Check available commands: blockchain --help

3

blockchain Documentation, Release unknown

4 Chapter 1. Getting Started

CHAPTER 2

How Does This Blockchain Implementation Work?

This implementation produces a simple CLI, Miner and UI. It is necessary to get up and running a local Miner. The
CLI, as well as the UI, uses the Miners REST interface to interact with it. Created messages get synchronized with
all other known Miners (neighbours) in the Blockchain network. A Miner asks all its neighbours periodically (if
not max amount of neighbours is reached) to send unknown Miner and connects to them. Also in a periodical manner,
Miner synchronizes their local Blockchain with the chains of there neighbours and use the longest valid chain in the
network.

2.1 Miner Implementation

This Miner implementation offers a REST API with the following endpoints:

• /add (PUT): needs the URL parameter message. Adds the message to the local cache of unprocessed data.

– response (200): JSON with message: ‘Message added!’

– response (400): JSON with message: ‘No Message added!’

• /chain (GET): Returns the miners local chain.

– response (200): JSON with the actual chain and its length.

• /neighbours (GET): Returns the miners neighbours.

– response (200): JSON with the actual neighbours and its length.

• /data (GET): Returns the miners local cache of unprocessed data.

– response (200): JSON with the actual list of unprocessed data.

The miner uses a set of files for normal operation:

5

blockchain Documentation, Release unknown

• <filename>.chain: Representation of the actual file.

• <filename>.hash: SHA-256 of the actual chain file. Is used to check if the local chain differs from its on
disc representation.

• <filename>_<date>_<time>: Older versions of the chain file. Created at <date>_<time>.

• miner.log: Log file and up to three backup files named miner.log.x where x is a number.

The Miner runs several Threads and a Process to run parallel and periodical tasks:

• Gossip Job (Thread): Implementation of a simple Gossip Protocol. Fetches periodical all
neighbours of its neighbours.

• Sync Chain Job (Thread): To get the actual longest global chain. Fetches periodical the chain of all
neighbours.

• Sync Unprocessed Data Job (Thread): To propagate unprocessed data through the network. Fetches
periodical the set of unprocessed data of all neighbours.

• Backup Local Chain Job (Thread): To backup the local chain to disc. Backups periodical the local chain
to disc if they differ from each other.

• Server Process (Process): Servers the Miners REST API in a separate process.

• Communication Job (Thread): Communication thread to exchange message with the server process.

2.2 Web-based User Interface

The CLI offers a subcommand ui, this allows to start an webserver for convenient interaction with the blockchain
system.

2.3 Proof of Work

A very simple implementation of a Proof of Work algorithm. The SHA-256 hash value of the concatenation of
the previous proof and the proof of the new Block has to start with difficulty trailing 0s.

6 Chapter 2. How Does This Blockchain Implementation Work?

CHAPTER 3

Improvements

• Miner endpoint (health) to check availability and provide opportunity to delete a neighbour

• More Error handling -> chain probably gets corrupt when killing miner

• Use locking for (chain, neighbours, data)

7

blockchain Documentation, Release unknown

8 Chapter 3. Improvements

CHAPTER 4

Contents

4.1 License

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and distribution as defined by
Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is grant-
ing the License.

“Legal Entity” shall mean the union of the acting entity and all other entities that control, are con-
trolled by, or are under common control with that entity. For the purposes of this definition, “control”
means (i) the power, direct or indirect, to cause the direction or management of such entity, whether
by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares,
or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by this
License.

“Source” form shall mean the preferred form for making modifications, including but not limited to
software source code, documentation source, and configuration files.

“Object” form shall mean any form resulting from mechanical transformation or translation of a
Source form, including but not limited to compiled object code, generated documentation, and con-
versions to other media types.

“Work” shall mean the work of authorship, whether in Source or Object form, made available under
the License, as indicated by a copyright notice that is included in or attached to the work (an example
is provided in the Appendix below).

9

http://www.apache.org/licenses/

blockchain Documentation, Release unknown

“Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or
derived from) the Work and for which the editorial revisions, annotations, elaborations, or other
modifications represent, as a whole, an original work of authorship. For the purposes of this License,
Derivative Works shall not include works that remain separable from, or merely link (or bind by
name) to the interfaces of, the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including the original version of the Work and
any modifications or additions to that Work or Derivative Works thereof, that is intentionally submit-
ted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity
authorized to submit on behalf of the copyright owner. For the purposes of this definition, “sub-
mitted” means any form of electronic, verbal, or written communication sent to the Licensor or its
representatives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the
purpose of discussing and improving the Work, but excluding communication that is conspicuously
marked or otherwise designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a Contri-
bution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform,
sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made, use, offer to sell, sell, import,
and otherwise transfer the Work, where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination
of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute
patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging
that the Work or a Contribution incorporated within the Work constitutes direct or contributory
patent infringement, then any patent licenses granted to You under this License for that Work shall
terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in
any medium, with or without modifications, and in Source or Object form, provided that You meet
the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices stating that You changed the files;
and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright,
patent, trademark, and attribution notices from the Source form of the Work, excluding those
notices that do not pertain to any part of the Derivative Works; and

(d) If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative Works
that You distribute must include a readable copy of the attribution notices contained within
such NOTICE file, excluding those notices that do not pertain to any part of the Derivative
Works, in at least one of the following places: within a NOTICE text file distributed as part
of the Derivative Works; within the Source form or documentation, if provided along with the
Derivative Works; or, within a display generated by the Derivative Works, if and wherever such
third-party notices normally appear. The contents of the NOTICE file are for informational
purposes only and do not modify the License. You may add Your own attribution notices within
Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from
the Work, provided that such additional attribution notices cannot be construed as modifying

10 Chapter 4. Contents

blockchain Documentation, Release unknown

the License.

You may add Your own copyright statement to Your modifications and may provide additional or
different license terms and conditions for use, reproduction, or distribution of Your modifications,
or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of
the Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally
submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions. Notwithstanding the above, nothing herein
shall supersede or modify the terms of any separate license agreement you may have executed with
Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service
marks, or product names of the Licensor, except as required for reasonable and customary use in
describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor pro-
vides the Work (and each Contributor provides its Contributions) on an “AS IS” BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without
limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABIL-
ITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining
the appropriateness of using or redistributing the Work and assume any risks associated with Your
exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence),
contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent
acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any
direct, indirect, special, incidental, or consequential damages of any character arising as a result of
this License or out of the use or inability to use the Work (including but not limited to damages for
loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial
damages or losses), even if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works
thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this License. However, in accepting such
obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor
harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your
accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with the
fields enclosed by brackets “{}” replaced with your own identifying information. (Don’t in-
clude the brackets!) The text should be enclosed in the appropriate comment syntax for the file
format. We also recommend that a file or class name and description of purpose be included
on the same “printed page” as the copyright notice for easier identification within third-party
archives.

Copyright {yyyy} {name of copyright owner}

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

4.1. License 11

http://www.apache.org/licenses/LICENSE-2.0

blockchain Documentation, Release unknown

Unless required by applicable law or agreed to in writing, software distributed under the License is dis-
tributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations under
the License.

4.2 Contributors

• Sebastian Jäger <se.jaeger@web.de>

4.3 Changelog

4.3.1 Version 0.1

• Implement core functionality

4.3.2 Version 0.2

• Implement Web-based user interface

4.4 src

4.4.1 blockchain package

Subpackages

blockchain.blockchain package

Submodules

blockchain.blockchain.block module

class blockchain.blockchain.block.Block(index: int, data: blockchain.blockchain.data.Data,
proof: int, previous_hash: str)

Bases: object

__bytes__()→ bytes
Uses the encoded string representation of this Block object as bytes representation.

Returns byte representation of Block object.

Return type bytes

__eq__(other: object)→ bool
Method for comparing two Block objects.

Parameters other (Block) – Block object to compare with self.

Returns True if blocks are equal. False otherwise.

Return type bool

12 Chapter 4. Contents

mailto:se.jaeger@web.de
https://docs.python.org/3.7/library/functions.html#object
https://docs.python.org/3.7/library/stdtypes.html#bytes
https://docs.python.org/3.7/library/functions.html#bool

blockchain Documentation, Release unknown

__repr__()→ str
String representation of Block object.

Returns String representation of Block object.

Return type str

data

index

previous_hash

proof

timestamp

blockchain.blockchain.blockchain module

class blockchain.blockchain.blockchain.Blockchain(path_to_chain: str, json_format:
bool, force_new_chain: bool)

Bases: object

_load_chain()→ None
Helper method to load chain from disk. Raises an error if no chain is found.

Raises ChainNotFoundError – Will be raised if no local chain could be found.

add_new_block(data: blockchain.blockchain.data.Data, proof: int, previous_hash: str) →
blockchain.blockchain.block.Block

Adds a new Block to the existing chain.

Parameters

• data (Data) – Data that is attached to this block.

• proof (int) – The proof value for this block.

• previous_hash (str) – Hash value of previous block in chain.

chain

genesis_block = | == | [1mindex[0m: 0 | [1mtime[0m: 1581268487.940726 | [1mproof[0m: None | [1mprev. hash[0m: None | __ | [1mdata[0m: | id: ab147d2c122443bfa62db26b7efdbaba | | message: This is the workload of the very first Block in this chain! | ___ | ==

genesis_block_hash = 'beac2e974625627e92f58831a56fd005570fb08a740cf114deb358dffa6b9525'

json_format

last_block

path_to_chain

save_chain()→ None
Helper method to save chain to disk. Creates intermediate directories and backups an existing chain file if
necessary.

blockchain.blockchain.data module

class blockchain.blockchain.data.Data(message: str)
Bases: object

__hash__()
Needed to use Set``s of ``Data objects.

4.4. src 13

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#object
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#object

blockchain Documentation, Release unknown

id

message

Module contents

blockchain.cli package

Submodules

blockchain.cli.cli module

Module contents

blockchain.client package

Submodules

blockchain.client.miner module

class blockchain.client.miner.Miner(path_to_chain: str, json_format: bool, port: int, diffi-
culty: int, neighbours: list, force_new_chain: bool)

Bases: object

_backup_local_chain()→ None
Periodical thread to backup the local chain to disc.

_check_for_longest_chain()→ None
Consensus Algorithm:

Ask each neighbour for that neighbours. Add all unknown miner to neighbours set
until maximum amount of neighbours is reached.

_communicate()→ None
Periodical thread to communicate with server process.

_fetch_unprocessed_data()→ None
Periodical thread to get unprocessed data form neighbours. => Broadcasts unprocessed data around the
network.

static _hash(block: blockchain.blockchain.block.Block)→ str
Hash a Block object with SHA-256.

Parameters block (Block) – Object of class Block to hash.

Returns Hex representation of block hash.

Return type str

Raises ValueError – Will be raised if no Block object is passed.

_is_chain_valid(chain: list = None)→ bool

Checks if the given chain satisfies the following rules:

1. The first (genesis) block:

• index = 0

14 Chapter 4. Contents

https://docs.python.org/3.7/library/functions.html#object
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/exceptions.html#ValueError

blockchain Documentation, Release unknown

• previous_hash = None

• proof = None

2. each and every following block:

• index: step size 1 and monotonically increasing (1, 2, 3, 4, . . .)

• previous_hash: SHA-256 of the string representation of the preceding block

• proof: has to be valid -> see: is_proof_of_work_valid()

• timestamp: higher than the timestamp of of preceding block

Parameters chain (list) – Optional chain if None internal representation is used.

Returns True if chain is valid, False otherwise.

Return type bool

_is_data_processed(data: blockchain.blockchain.data.Data)→ bool
Checks if data is already in local chain.

Parameters data (Data) – Data object to check if it exists in the actual chain.

Returns True if unprocessed.

Return type bool

static _is_proof_of_work_valid(last_proof: int, proof: int, difficulty: int)→ bool
Checks if the proof of work was correct. The hash value of last_proof concatenated with proof has
to be difficulty trailing 0s.

Parameters

• last_proof (int) – Value of the proof of the preceding block.

• proof (int) – proof of the actual block.

• difficulty (int) – Amount of trailing 0s.

Returns True if proof of work is correct, False otherwise.

Return type bool

Raises ValueError – Will be raised if difficulty is not a positive integer value.

_mine()→ None
Blocking Mining loop.

If not_processed_messages are available it uses a random message an mines a new block.

_new_message(message: str)→ None

Adds the new message to its local cache.

Parameters message (str) –

_proof_of_work(last_proof: int, difficulty: int)→ int
Simple proof of work:

Find a number p that when hashed with the previous block’s solution a hash with
difficulty trailing 0s is produced.

Parameters

4.4. src 15

https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/stdtypes.html#str

blockchain Documentation, Release unknown

• last_proof (int) – Solution of the last blocks’ proof of work

• difficulty (int) – Amount of trailing 0s for a valid proof of work.

Returns Solution for this proof of work quiz.

Return type int

Raises ValueError – Will be raised if difficulty is not a positive integer value.

_update_neighbours()→ None
Periodical thread to update neighbours if limit is not exceeded.

blockchain

difficulty

jobs

neighbours

port

queue

server_process

start()→ None
Starts some background Job s for the Gossip Protocol, Chain syncing, Data syncing, communication
thread as well as the server functionalities as process. Starts the blocking function mine().

stop()→ None
Function that gets called when Python was killed. Takes care to shutting down all threads/process and
saves the chain to disc.

unprocessed_data

blockchain.client.server module

blockchain.client.server.start_server(queue: multiprocessing.context.BaseContext.Queue,
port: int)

Module contents

blockchain.ui package

Submodules

blockchain.ui.forms module

blockchain.ui.routes module

Module contents

blockchain.utils package

16 Chapter 4. Contents

https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/exceptions.html#ValueError

blockchain Documentation, Release unknown

Submodules

blockchain.utils.constants module

blockchain.utils.errors module

exception blockchain.utils.errors.ChainNotFoundError
Bases: Exception

Error if no local chain could be found.

exception blockchain.utils.errors.ChainNotValidError
Bases: Exception

Error if loaded chain is not valid.

exception blockchain.utils.errors.PortValueError
Bases: ValueError

Error if given port is out af valid range (1 - 65535).

exception blockchain.utils.errors.ProgramKilledError
Bases: Exception

Error if process get killed.

blockchain.utils.utils module

class blockchain.utils.utils.Job(interval: datetime.timedelta, execute, *args, **kwargs)
Bases: threading.Thread

run()→ None
Runs the background Job

stop()→ None
Stops the background Job.

blockchain.utils.utils.colorize(text: str, color: str)→ str

blockchain.utils.utils.create_proper_url_string(host_port: (<class ’str’>, <class
’int’>), path: str)→ str

Takes the internal representation of neighbours and a endpoint path to create a proper URL string for requests.

Parameters

• host_port (str, int) – Internal representation of IP address/hostname and port com-
bination.

• path (str) – The endpoint of the API.

Returns Correct URL string for address and path.

Return type str

blockchain.utils.utils.encode_file_path_properly(file_path: str)→ str
Encode each and every input filepath as absolute pathes.

Parameters file_path (str) – Path to encode properly

Returns Absolute and properly encoded file_path

Return type str

4.4. src 17

https://docs.python.org/3.7/library/exceptions.html#Exception
https://docs.python.org/3.7/library/exceptions.html#Exception
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/exceptions.html#Exception
https://docs.python.org/3.7/library/threading.html#threading.Thread
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str

blockchain Documentation, Release unknown

blockchain.utils.utils.signal_handler(signum, frame)
Signal handler used to raise special ProgramKilledError.

Raises ProgramKilledError – To intercept for graceful shutdown.

blockchain.utils.utils.split_url_string(host_port: str) -> (<class ’str’>, <class ’int’>)
Parses the given URL string and returns the IP address/hostname and the port/default port.

Parameters host_port (str) – Representation of the miner as URL string, e.g.: 127.0.0.
1:12345, miner1:8888, miner, http://localhost, . . .

Returns Tuple of IPv4 Address or hostname string and port number.

Return type (str, int)

Raises

• PortValueError – Will be raised if given port is out of range.

• AddressValueError – Will be raised if given address is not a valid IPv4 address or
“localhost”.

Module contents

Module contents

18 Chapter 4. Contents

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#int

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

19

blockchain Documentation, Release unknown

20 Chapter 5. Indices and tables

Python Module Index

b
blockchain, 18
blockchain.blockchain, 14
blockchain.blockchain.block, 12
blockchain.blockchain.blockchain, 13
blockchain.blockchain.data, 13
blockchain.cli, 14
blockchain.cli.cli, 14
blockchain.client, 16
blockchain.client.miner, 14
blockchain.client.server, 16
blockchain.utils, 18
blockchain.utils.constants, 17
blockchain.utils.errors, 17
blockchain.utils.utils, 17

21

blockchain Documentation, Release unknown

22 Python Module Index

Index

Symbols
__bytes__() (blockchain.blockchain.block.Block

method), 12
__eq__() (blockchain.blockchain.block.Block method),

12
__hash__() (blockchain.blockchain.data.Data

method), 13
__repr__() (blockchain.blockchain.block.Block

method), 12
_backup_local_chain()

(blockchain.client.miner.Miner method),
14

_check_for_longest_chain()
(blockchain.client.miner.Miner method),
14

_communicate() (blockchain.client.miner.Miner
method), 14

_fetch_unprocessed_data()
(blockchain.client.miner.Miner method),
14

_hash() (blockchain.client.miner.Miner static method),
14

_is_chain_valid() (blockchain.client.miner.Miner
method), 14

_is_data_processed()
(blockchain.client.miner.Miner method),
15

_is_proof_of_work_valid()
(blockchain.client.miner.Miner static method),
15

_load_chain() (blockchain.blockchain.blockchain.Blockchain
method), 13

_mine() (blockchain.client.miner.Miner method), 15
_new_message() (blockchain.client.miner.Miner

method), 15
_proof_of_work() (blockchain.client.miner.Miner

method), 15
_update_neighbours()

(blockchain.client.miner.Miner method),

16

A
add_new_block() (blockchain.blockchain.blockchain.Blockchain

method), 13

B
Block (class in blockchain.blockchain.block), 12
blockchain (blockchain.client.miner.Miner attribute),

16
Blockchain (class in

blockchain.blockchain.blockchain), 13
blockchain (module), 18
blockchain.blockchain (module), 14
blockchain.blockchain.block (module), 12
blockchain.blockchain.blockchain (mod-

ule), 13
blockchain.blockchain.data (module), 13
blockchain.cli (module), 14
blockchain.cli.cli (module), 14
blockchain.client (module), 16
blockchain.client.miner (module), 14
blockchain.client.server (module), 16
blockchain.utils (module), 18
blockchain.utils.constants (module), 17
blockchain.utils.errors (module), 17
blockchain.utils.utils (module), 17

C
chain (blockchain.blockchain.blockchain.Blockchain

attribute), 13
ChainNotFoundError, 17
ChainNotValidError, 17
colorize() (in module blockchain.utils.utils), 17
create_proper_url_string() (in module

blockchain.utils.utils), 17

D
data (blockchain.blockchain.block.Block attribute), 13

23

blockchain Documentation, Release unknown

Data (class in blockchain.blockchain.data), 13
difficulty (blockchain.client.miner.Miner attribute),

16

E
encode_file_path_properly() (in module

blockchain.utils.utils), 17

G
genesis_block (blockchain.blockchain.blockchain.Blockchain

attribute), 13
genesis_block_hash

(blockchain.blockchain.blockchain.Blockchain
attribute), 13

I
id (blockchain.blockchain.data.Data attribute), 13
index (blockchain.blockchain.block.Block attribute), 13

J
Job (class in blockchain.utils.utils), 17
jobs (blockchain.client.miner.Miner attribute), 16
json_format (blockchain.blockchain.blockchain.Blockchain

attribute), 13

L
last_block (blockchain.blockchain.blockchain.Blockchain

attribute), 13

M
message (blockchain.blockchain.data.Data attribute),

14
Miner (class in blockchain.client.miner), 14

N
neighbours (blockchain.client.miner.Miner attribute),

16

P
path_to_chain (blockchain.blockchain.blockchain.Blockchain

attribute), 13
port (blockchain.client.miner.Miner attribute), 16
PortValueError, 17
previous_hash (blockchain.blockchain.block.Block

attribute), 13
ProgramKilledError, 17
proof (blockchain.blockchain.block.Block attribute), 13

Q
queue (blockchain.client.miner.Miner attribute), 16

R
run() (blockchain.utils.utils.Job method), 17

S
save_chain() (blockchain.blockchain.blockchain.Blockchain

method), 13
server_process (blockchain.client.miner.Miner at-

tribute), 16
signal_handler() (in module

blockchain.utils.utils), 17
split_url_string() (in module

blockchain.utils.utils), 18
start() (blockchain.client.miner.Miner method), 16
start_server() (in module

blockchain.client.server), 16
stop() (blockchain.client.miner.Miner method), 16
stop() (blockchain.utils.utils.Job method), 17

T
timestamp (blockchain.blockchain.block.Block at-

tribute), 13

U
unprocessed_data (blockchain.client.miner.Miner

attribute), 16

24 Index

	Getting Started
	Install the CLI Locally

	How Does This Blockchain Implementation Work?
	Miner Implementation
	Web-based User Interface
	Proof of Work

	Improvements
	Contents
	License
	Contributors
	Changelog
	src

	Indices and tables
	Python Module Index
	Index

